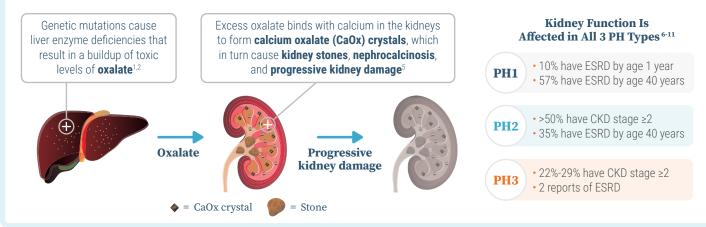
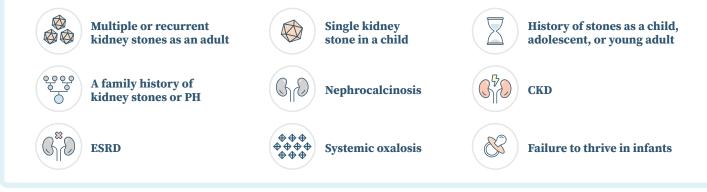
UncoveringPH

Recurring kidney stones in adults or a single kidney stone in children may be a sign of something more serious.

Primary hyperoxaluria (PH) often appears similar to other kidney stone diseases, but beneath the surface, you'll find a family of ultra-rare genetic disorders that can lead to renal damage and chronic kidney disease (CKD). As the disease progresses, it can lead to end-stage renal disease (ESRD), requiring dialysis and a dual liver-kidney transplant.¹⁻⁴

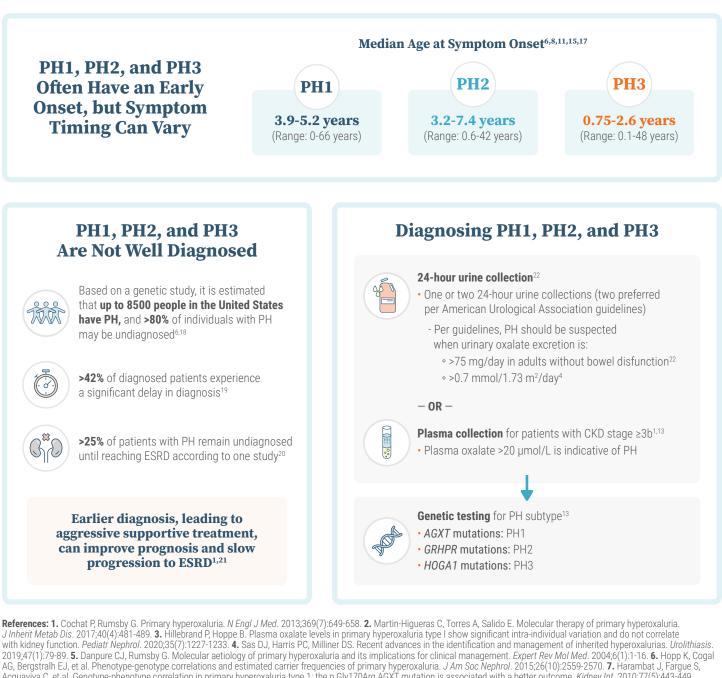


For more information, please visit **www.uncoveringph.com**


Calcium oxalate crystals accumulate, forming a kidney stone

In PH1, PH2, and PH3, Toxic Levels of Oxalate Accumulate in the Kidneys, Which Can Cause Kidney Stones, Kidney Damage,

Key Warning Signs and Symptoms of PH


Patients may have one or a combination of these warning signs¹²⁻¹⁵:

Dicerna

PH: A Hereditary Stone Disease That Causes Kidney Damage

Primary hyperoxaluria (PH) is a family of ultra-rare genetic disorders that results in toxic oxalate overproduction, kidney stones, and kidney damage. More than 70% of patients with PH require one or multiple stone removal procedures throughout their lives.^{1,3,16}

with kidney function. *Pediatr Nephrol.* 2020;35(7):1227-1233. **4.** Sas DJ, Harris PC, Milliner DS. Recent advances in the identification and management of inherited hyperoxaluria: 2019;47(1):79-89. **5.** Danpure CJ, Rumsby G. Molecular aetiology of primary hyperoxaluria and its implications for clinical management. *Expert Rev Mol Med.* 2004;6(1):1-16. **6.** Hopp K, Cogal AG, Bergstralh EJ, et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. *J Am Soc Nephrol.* 2015;26(10):2559-257. **7.** Harambat J, Fargue S, Acquaviva C, et al. Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. *Kidney Int.* 2010;77(5):443-449. **8.** Garrelfs SF, Rumsby G, Peters-Sengers H, et al; OxalEurope Consortium. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. *Kidney Int.* 2010;976(3):1389-1399. **9.** Richard E, Blouin JM, Harambat J, et al. Late diagnosis of primary hyperoxaluria type 1. *Nan Clin Biochem.* 2017;54(3):406-411. **10**. Allard L, Cochat P, Leclerc AL, et al. Renal function can be impaired in children with primary hyperoxaluria type 3. *Pediatr Nephrol.* 2015;30(10):1807-1813. **11.** Martin-Higueras C, Garrelfs SF, Groothoff JW, et al. A report from the European Hyperoxaluria Consortium (OxalEurope) Registry on a large cohort of patients with primary hyperoxaluria type 3. *Kidney Int.* 2018;67(2):2085-2538(21)00386-0. **12.** Bhasin B, Ürekli HM, Atta MG. Primary and secondary hyperoxaluria: Understanding the enigma. *World J Nephrol.* 2015;4(2):235-244. **13.** Edvardsson VO, Goldfarb DS, Lieske JC, et al. Hereditary causes of Kidney disease. *Pediatr Nephrol.* 2013;28(10):1923-1942. **14.** Milliner DS. The primary hyperoxalurias: an algorithm for diagnosis. *Am J Nephrol.* 2005;25(2):154-160. **15.** Mandrile G, van Woerden CS, Berchialla P, et al; OxalEurope Consortium. Data from a large European study indicate that the outcome

